
JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS                                             Vol. 14, No. 3-4, March – April 2012, p. 393 - 400 
 

Influence of non-linear electrons interaction at their 
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nano-system 
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The quantum mechanical theory of permeability coefficient and negative active conductivity of mono-energetic electronic 
flux through the plane symmetric two-barrier resonance tunnel structure which can be an active element of quantum 
cascade laser is developed within the models of effective masses and rectangular potentials taking into account the 
electron-electron interaction. The properties of permeability coefficient and conductivity as functions of electrons energies 
and frequency of electromagnetic radiation are established. It is shown how the properties of active conductivity can be 
used for the experimental evaluation of resonance energies and widths of working electron quasi-stationary states. 
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1. Introduction 
 
The theory of electronic transport through the two-

barrier resonance tunnel structures (RTS), fig. 1, is 
important in particular, because these nano-systems are 
used as an active elements of quantum cascade lasers 
(QCL) operating in the actual range of electromagnetic 
waves frequencies – the windows of atmosphere 
transparency. The main physical characteristics: intensity 
of laser radiation, excited current and so on essentially 
depends just on the properties of negative active 
conductivity. 

In the prevailing number of papers [1-5] concerning 
the theory of physical processes in QCL, the transport 
properties of electronic currents through the RTS are 
studied. However, the electron-electron interaction is not 
considered, as a rule, due to the mathematical problems of 
the solution of non-linear differential equations. 
 

 
 

Fig. 1. Energy scheme for the electrons and geometry of 
two-barrier RTS. 

In our paper the theory of active negative conductivity 
and permeability coefficient for the open two-barrier RTS 
is developed. The electron-electron interaction and their 
interaction with electromagnetic field are taken into 
account within the models of rectangular potential barriers 
and different quasi-particle effective masses in wells and 
barriers of RTS. 

The problem of non-linear electron-electron 
interaction in physics of bosons and quasi-particles in 
some other models is studied in a lot of papers [6-11]. 
However, the developed mathematical methods can not be 
directly used for the research of electronic transport 
through the open RTS. 

The similar problem was observed in papers [12, 13]. 
The rectangular potential barriers were approximated by δ-
like ones in order to avoid the mathematical difficulties.  
The known fault of simplified model [14] is automatic 
ignoring of different electron effective mass in RTS wells 
and barriers. It brings to the overestimated magnitudes of 
resonance energies of electron quasi-stationary states 
(QSS) at tens per cents and resonance widths – tens times 
over. 

 
 
2. Hamiltonian of the system. Permeability  
    coefficient and active conductivity for  
     symmetric two-barrier RTS 
 
The plane open symmetric two-barrier RTS, fig. 1, is 

studied in Cartesian coordinate system with OZ axis 
perpendicular to the nano-system planes. The small 
difference of lattice constants for layers-wells and layers-
barriers allows to use the model of effective masses and 
rectangular potentials, where: 
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∞=−∞=− 41 , zz . 
It is assumed that mono-energetic electronic beam is 

falling at RTS from the left side, perpendicularly to its 
planes. The electrons are characterized by the energy E, 
density of current Ej ~0

+  and concentration n0. The 
electronic current is considered one-dimensional and 
complete Schrodinger equation is written as: 
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 – the Hamiltonian of quasi-stationary case (expression of 
Gross-Pitaevsky type) containing the energy (υ|Ψ(E,z)|2) of 
non-linear electron-electron interaction in Hartree-Fock 
approximation where Ψ(E,z) function satisfies the 
equation: 
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The Hamiltonian of electron interaction with varying 
in time electromagnetic field characterized by frequency ω 
and not big intensity of electric field Є allows assume it 
small in the frames of perturbation theory. Thus, it can be 
written in convenient analytical calibration (not Coulomb 
one): 
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where 
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The equation (3) has not the exact solution, since, 
taking into account H(z, t), it can be solved in the so-called 
approximation of weak signal when Ψ(E,z,t)  wave 
function is taken as: 
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where Ψ(E,z) satisfies equation (5) and the correction of 
the first order to the wave function in one-mode 
approximation is: 
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Preserving the first order magnitudes in equation (3) 

and considering (7), (8), the system of two non-linear 
equations is obtained for Ψ±1(E,z) functions: 
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In order to solve it, we have to find the analytical 
expression for Ψ(E,z) function which is the solution of 
non-linear Schrodinger equation (5). As far as two-barrier 
RTS is an open one, this equation is solved taking into 
account the conditions of wave function and its density of 
current continuity at all interfaces (η→+0):  
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together with the normality condition: 
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Now, Ψ(E,z) wave function is obtained within two 
methods: numeric Monte-Carlo and recursive one. 

Monte-Carlo method is well known but the 
calculation of Ψ(E,z) wave function at the strong electron-
electron interaction demands unacceptable amount of time. 
Consequently, further we use this method calculating the 
wave functions for the particular systems with respectively 
not big non-linearity. The results almost exactly coincide 
to the ones obtained by recursive method. The latter allows 
obtain the wave functions for equation (5) quickly and 
with demanded exactness even for the big magnitudes of 
non-linear electron-electron interaction. 

The solution of non-linear equation (5) within 
recursive method is performed in such a way. First of all 
we solve the linear Schrodinger equation (without 
interaction): 
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Its exact solution is known: 
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where geometric parameters of two-barrier RTS are: 
;00 =z    ;1 ∆=z    ;2 ∆+= bz    .23 ∆+= bz     (14) 

 
The magnitudes kp are determined by the dynamic 

characteristics of electron: 
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and Ap(E), Bp(E), B0(E), A4(E) coefficients are  definitely 
fixed by A0(E) coefficient, in its turn related to the density 
of current, falling at two-barrier RTS: 
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The equation (5) can not be directly solved using 
Ψ0(E,z) function, expr. (13). But the known now |Ψ0(E,z)|2 
function can be expressed as a sum of N piece-continuous 
functions: 
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Its example, as function of  E and z is shown in 

fig. 2а.  
Now then, for the rather big magnitudes N>>1, the 

continuous function |Ψ0(E,z)|2 can be replaced by piece- 

continuous function 2
0

2

0 ),(),(~ zEzE NΨ≈Ψ  with 

demanded exactness. According to this, the non-linear 
potential (υ|Ψ0(E,z)|2) transits into piece-continuous one  

(
2

0 ),(~ zEΨυ ) in equation (5). Using the latter, we can 

solve the equation (5) together with the continuity 
conditions (10) and find ΨI(E,z) non-linear function in the 
first approximation of perturbation theory. 

Using ΨI(E,z) function we find |ΨI(E,z)|2 in the form 
of piece-continuous functions (at N>>1): 
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Substituted into (5) together with conditions (10), 
2

),(~ zEIΨ  function makes the potential linear in the 

intervals corresponding to z variable. It, again, allows 
solve the Schrodinger equation and obtain the wave 
function ΨII(E,z) in second cycle (approximation). 

Within the recursive method Ψ(E,z) function as the 
solution of non-linear equation (5) in arbitrary S cycle can 
be found: 
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The number of cycles (S), used for Ψ(E,z) recursive 

calculation, is determined be the desired exactness and is 
controlled by the evident condition: 
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It is clear that the fixed exactness (ζ) for Ψ(E,z) 

calculation depends on the magnitude of potential of 
electron-electron interaction (υ): the bigger it is, the bigger 
number of cycles (S) one has to perform. 

The example of |Ψ(E,z)|2 dependence on E and z in the 
vicinity of the energies of two first electron QSSs at 
different magnitudes of potential of electron-electron 
interaction (υ) is shown in fig. 2b. Fig. 2 proves that the 
results obtained within both methods: Monte-Carlo (a) and 
recursive (b), are almost coinciding and the difference 
between them is not observed.  

The obtained wave function (18), according to 
quantum mechanics [15], allows obtain the permeability 
coefficient: 
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for the electronic current through the two-barrier RTS. It is 
known from refs. [14, 15] that using the permeability 
coefficient D(E) one can obtain the spectral parameters 
(resonance energies and resonance widths) of electron 
QSSs. The positions of D(E) maxima in energy scale 
define the resonance energies (En) and their widths at the 
half of the height define the resonance widths (Гn)  of n-th 
QSS. The analysis of D(E) properties for the two-barrier 
RTS, experimentally investigated [16-19], is performed in 
the next section. 
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Fig. 2. Evolution of  |Ψ(E,z)|2 function  for two first electron QSSs (n =1, 2): a)  υ=0 (n =1,2); b)  υ=10-3 meV 
(n=1), υ=0.1 meV (n=2) for the two-barrier RTS with geometric parameters: ∆=2.1 nm, b=10.8 nm 

 
 

The obtained Ψ(E,z) wave function allows to take the 
solutions of non-linear equations (9) as: 
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where Ψ±(E,z) – the solutions of homogeneous, Ф±(E,z) – 
exact partial solutions of heterogeneous equations (9). 

The solutions of homogeneous equatios (9) are written 
as: 
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          The partial solutions of heterogeneous equations (9) 
are known: 
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The conditions of wave functions (21) and their 
densities of currents continuity at all nano-system 
interfaces bring to the system of eight heterogeneous 
equations fixing eight coefficients ( ),()0( EB±  ),()4( EA±  

),()( EB p
±  )()( EA p

± , p=0÷3). 
Finally, we have obtained the function Ψ±(E,z), 

correction of the first order Ψ1(E,z,t) and, thus, the 
complete wave function Ψ(E,z,t). 

The complete wave function of electrons interacting 
with periodic in time electromagnetic field, according to 
quantum mechanics, determines the density of electronic 
current through the nanostructure: 
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Taking into account the small sizes of two-barrier 

RTS compared to the electromagnetic wave length, in 
quasi-classic approximation for the quantum transitions 
accompanied by radiation, further we perform the 
calculation of guided current defining the absolute value of 
negative active conductivity: 
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Here σ+(E,ω), σ-(E,ω) – the partial terms of 
conductivity caused by the electronic currents  interacting 
with electromagnetic field and flowing forward (σ+(E,ω)) 
and backward (σ-(E,ω)) respectively the starting current 
falling at two-barrier RTS. 

 
 
3. Influence of non-linear electron-electron  
    interaction at the conductivity and  
    permeability of two-barrier RTS 
 
Influence of electron-electron interaction at the 

conductivity and permeability of open two-barrier RTS is 
studied for the plane nano-structure consisting of 

In0.53Ga0.47As – wells and In0.52Al0.48As – barriers and 
physical parameters: m0=0.046 me, m1=0.089 me, 
U=516 meV. 

 
 

In fig. 2 the dependence of |Ψ(E,z)|2 on energy (E) and 
coordinate (z) is presented in the vicinity of the energies of 
two first electron QSSs for the different magnitudes of 
electron-electron interaction (υ) in order to explain the 
changes of permeability coefficient D(E,υ) and active 
conductivity σ(E,ω,υ). Figure proves that independently 
on υ magnitude, |Ψ(E,z)|2   function at E=const has n 
maxima in the vicinity of n-th QSS, the same as in the case 
of closed nanostructure. At fixed magnitude of coordinate, 
|Ψ(E,z=const)|2 as function of energy more and more 
deflects from Lorentz shape and is deformed in such a way 
that its high-energy wing rapidly decays while the low-
energy one, gradually  raising, becomes more sloping. 

The clarified properties of |Ψ(E,z)|2 determine the 
evolution of permeability coefficient D(E,υ) shape 
depending on energy (E) in the vicinity of first and second 
QSS for the different magnitudes of electron-electron 
interaction (υ), fig. 3. At this figure, the evolution of 
D(E,υ) in δ-barrier model is presented for the comparison 
for the same two-barrier RTS. 

It is known that δ-barrier model overestimates the 
resonance energies of electron QSSs at tens percents and 
the resonance widths ten times over, comparing to the 
model of rectangular potentials. It is clear from fig.3 that 
the electron-electron interaction in realistic model causes 
the essential deformation of permeability coefficient even 
when the interaction is two orders smaller than δ-barrier 
model gives. 

Fig. 3 also proves that at υ=0 the evolution of D(E,υ) 
is qualitatively equal for the both models. The 
permeability coefficient for all QSSs has the shape of 
Lorentz curve with maximal value D(En,υ)=1 at all 
resonance energies En with resonance widths Гn. At the 
increasing of electron-electron interaction energy, the 
shape of D(E,υ) in the vicinity of renormalized resonance 
energies (En(υ)) at first becomes quasi-Lorentz. At further 
υ increasing, the function D(E,υ) is more and more 
deformed: its low-energy wing is slowly raising in the 
vicinity of maximum, obtaining quasi-Lorentz dependence 
on E and high-energy wing sharply, almost plumb, decays. 
Thus, in the vicinity of  resonance energies (En(υ)) 
renormalized by interaction, the shape of D(E,υ) very 
differs from the Lorentz one and becomes wedge-like for 
the rather big υ magnitudes. 

Consequently, now it is necessary to generalize the 
sense of resonance energies (En(υ)) and widths (Гn(υ)) 
characterizing the symmetric Lorentz curve so that they 
would be extended at the wedge-like shape of D(E,υ). The 
way of the procedure is clear from fig. 4. Really, the 
generalization of resonance energies (En(υ)) is evident. 
The generalized resonance width (Гn(υ)) of n-th QSS is 
convenient to introduce as a sum of low-energy (γnl(υ)) 
and high-energy ((γnh(υ)) widths because, since 
γnl(υ→0)=γnh(υ→0)=Гn(0)/2, then quite such procedure 
ensures the correct limit case Гn(υ→0)=Гn. 
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Fig. 3. Dependences of permeability coefficient D  on energy E in the vicinity of two first electron QSSs at 
different magnitudes of electron-electron interaction energy υ  obtained within the  model of rectangular potentials  
                     (a),  δ-barrier model (b) for two-barrier RTS with geometrical parameters ∆=2.4 nm, b=21.6 nm. 
 

Fig. 4 proves the expediency and convenience of 
using the generalized resonance energies and widths as 
generalized spectral parameters of permeability coefficient 
D(E,υ). At the figure one can see the dependence of 
generalized resonance energy on the magnitude of 
electron-electron interaction (En(υ)) and generalized 
resonance width (Гn(υ)) – within the distance  between  
the  curves  En(υ)+γnh(υ)  and      En(υ)-γnl(υ). 

 
 
 

The dependence of conductivity σ(E,ω,υ) on the 
energy of electromagnetic field (hω) at υ=0; 5·10-5 meV 
for the several electron energies (E) in the range E2-
Г2/2 ≤ E ≤ E2+Г2/2 is shown in fig. 5 for the two-barrier 
RTS with geometric parameters ∆=2.4 nm, b=21.6 nm (left 
and down scales). The permeability coefficient as function 
of electron energy (right and up scales) is presented in the 
vicinity of generalized resonance energy of the second 
QSS (central figure) and in the  
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Fig. 4. Dependences of generalized resonance energies  and widths of  two electron QSSs (n=1, 2) on energy of 

electron-electron interaction (υ) at ∆=2.1 nm and  b = 10.8 nm
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vicinity of the first QSS (insert figure) for the same υ 
magnitudes. 

Fig. 5 proves that independently of υ magnitude, the 
permeability coefficient D(E,υ) in the vicinity of 
generalized resonance energy of second electron QSS 
almost coincides with normalized enveloping over the 
energy function: 
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The difference between both functions is not visible at 

the figure. In the vicinity of the generalized resonance 

energy of the first electron QSS, the function D(E,υ) 
almost coincides with normalized  active conductivity: 
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From the figure one can also see that the electron-

electron interaction almost does not influence at the 
maximal magnitude of conductivity σ(E,ω). However, the 
function σ(E,ω,υ) is weakly shifted,  proportionally to the 
interaction energy (υ max|Ψ(E,z)|2), into the region of 
smaller frequencies. Its shape is deformed from Lorentz-
like to wedge-like. 
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Fig. 5. Active conductivity (σ ) as function of electromagnetic field energy ( ωh ) at different energies ( E ), left 
and down scales, respectively. Permeability coefficient (D) as function of  energy (Е), right and up scales, 

respectively. Dotted curves: υ=0;    solid curves: υ=5·10-5 meV  
 

4. Conclusions  
 
The quantum mechanical theory of electrons active 

conductivity is developed for the open two-barrier RTS 
taking into account the electron-electron interaction. It is 
established that the electron-electron interaction almost 
does not influence at the maximal intensity of 
electromagnetic radiation, proportional to the absolute 
value of negative active conductivity maximum 
(~ max σ(E,ω)). The whole σ(E,ω) function is weakly 
shifted into low-energy region  and its shape changes from 
Loretz-like to wedge-like. 

Experimentally scanning the active conductivity for 
the two-barrier RTS by mono-energetic electronic beam, 
one can obtain σ as function of energy (Е) and frequency 
(ω). It would allow the evaluating of spectral parameters: 
generalized resonance energies and widths of working 
QSSs of electron. 
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